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Abstract

Recent advances in applying deep learning to planning have
shown that Deep Reactive Policies (DRPs) can be powerful
for fast decision-making in complex environments. However,
an important limitation of current DRP-based approaches is
either the need of optimal planners to be used as ground truth
in a supervised learning setting or the sample complexity
of high-variance policy gradient estimators, which are par-
ticularly troublesome in continuous state-action domains. In
order to overcome those limitations, we introduce a frame-
work for training DRPs in continuous stochastic spaces via
gradient-based policy search. The general approach is to ex-
plicitly encode a parametric policy as a deep neural network,
and to formulate the probabilistic planning problem as an op-
timization task in a stochastic computation graph by exploit-
ing the re-parameterization of the transition probability den-
sities; the optimization is then solved by leveraging gradient
descent algorithms that are able to handle non-convex objec-
tive functions. We benchmark our approach against stochas-
tic planning domains exhibiting arbitrary differentiable non-
linear transition and cost functions (e.g., Reservoir Control,
HVAC and Navigation). Results show that DRPs with more
than 125,000 continuous action parameters can be optimized
by our approach for problems with 30 state fluents and 30 ac-
tion fluents on inexpensive hardware under 6 minutes. Also,
we observed a speedup of 5 orders of magnitude in the aver-
age inference time per decision step of DRPs when compared
to other state-of-the-art online gradient-based planners when
the same level of solution quality is required.

Introduction
Deep Learning (DL) methods have achieved remarkable
success over the past few years in a large variety of complex
tasks, ranging from perception problems (Hinton et al. 2012;
Krizhevsky, Sutskever, and Hinton 2012; Sutskever, Vinyals,
and Le 2014) to control systems (Mnih et al. 2015; Silver
et al. 2016). Inspired by these successful applications, re-
cent advances in Deep Reactive Policies (DRPs) have shown
promising results in applying DL to model-known planning.

A distinguished feature of DRPs concerning applications
involving autonomous agents is that these policies are par-
ticularly suited to fast decision making, in contrast to state-
of-the-art planners typically based on online simulation-
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based methods (Yoon et al. 2008; Keller and Helmert 2013;
Raghavan et al. 2017) that can require non-trivial computa-
tional time per decision step. However, an important limi-
tation of current approaches to learning DRPs is either the
need of optimal planners to be used as supervisors, or the
sample complexity of methods based on high-variance pol-
icy gradients. Both issues can be troublesome for planning
in continuous spaces, especially for domains exhibiting non-
linear dynamics and costs. In the case of training DRPs by
supervised learning, no efficient domain-independent opti-
mal planner is currently available to be used as ground truth
for the class of stochastic nonlinear domains. On the other
hand, policy gradient methods for continuous action spaces
can considerably exacerbate the need of huge amounts of
data and processing power, which can be prohibitively ex-
pensive for common users in most applications.

So, in order to overcome those limitations, we propose a
general framework of planning as optimization in continu-
ous spaces. The basic idea is to leverage automatic differ-
entiation in stochastic computation graphs to estimate gra-
dients used to optimize the parameters of DRPs. We exploit
the fact that several distributions used in model-known plan-
ning are amenable to the re-parameterization trick, which
allows for optimizing a surrogate cost function by the appli-
cation of adaptive stochastic gradient descent methods com-
monly used in DL. We compare our approach to a stochastic
online extension of the recently proposed approach Planning
through Backpropagation (Wu, Say, and Sanner 2017).

We are particularly interested in shedding light on the
following questions. Is it possible to efficiently train DRPs
for stochastic nonlinear domains without supervision or pol-
icy gradients? How do offline learned DRPs compare in
terms of quality of solution and computational time to on-
line gradient-based planning? How do different DRP ar-
chitectures (i.e., in terms of number of layers, number of
units) compare amongst themselves? Our experiments on
stochastic nonlinear domains (e.g., Navigation (Faulwasser
and Findeisen 2009), HVAC (Heating, Ventilation, and Air
Conditioning) (Agarwal et al. 2010), and Reservoir Control
(Yeh 1985)) highlight the flexibility of our approach over
diverse differentiable transition and cost functions.

The results show that DRPs trained by gradient-based op-
timization in stochastic computation graphs can be evalu-
ated within a fraction of the time needed by state-of-the-



art online planners even when the same level of solution
quality is required. Indeed, we observed a speedup of 5 or-
ders of magnitude in the average inference time per decision
step of DRPs. Moreover, our experiments show that DRPs
with more than 125,000 continuous action parameters can be
learned by gradient-based optimization for stochastic non-
linear problems with 30 state fluents and 30 action fluents
on inexpensive hardware under 6 minutes.

The paper is organized as follows. First, we present the
motivations, related work and the formal background of the
work. Then, we introduce our main contributions related to
planning as optimization as a viable training method for
DRPs. We continue with a presentation of the empirical
analysis. We conclude with our final remarks and ideas for
future work.

Related Work
DRPs have recently received considerable attention in the
planning community (Toyer et al. 2018; Issakkimuthu, Fern,
and Tadepalli 2018; Groshev et al. 2018). Most works on
DRPs, however, have exclusively focused on discrete action
spaces and stochastic policies. In these works, the policy
network is usually trained by supervised learning. The ba-
sic idea is to leverage optimal planners as supervisors from
which a target action for each state can be obtained. The
DRPs can then be optimized via minimization of the cross-
entropy error between the action distribution of the stochas-
tic policy and the ground truth action, akin to an imita-
tion learning approach, but for which the action to be im-
itated is given by the optimal planner instead of a human.
Even though these works have managed to train policies en-
abling fast decision-making, their main contributions high-
light the opportunities of exploiting the structure of the do-
main, and consequently how transfer learning can be accom-
plished across instances of the same domain. Conversely,
our work focuses on deterministic policies in continuous
spaces to which not much attention has been given in the
area of model-known planning.

Other methods for training reactive policies have been
proposed in the past and have led to the development of ef-
ficient planners. The Factored Policy Gradient (FPG) plan-
ner (Aberdeen 2005; Buffet and Aberdeen 2007) performs
stochastic local search on the policy space using policy
gradients, a technique inspired by Reinforcement Learning
(RL). Policy gradients have been long studied in RL and
many important works have achieved great success in prac-
tical applications. We do not revise RL-related works here
since we are most concerned with model-known planning.
Suffice it to say that policy gradient is a viable option to
derive gradient estimators when the model dynamics is un-
known or non-differentiable, which is typically the case in
model-free RL applications. In contrast, we propose exactly
the opposite, i.e., to learn a policy by leveraging gradients
backpropagated through the model dynamics itself.

The most closely related prior work in terms of learning
parametric policies via gradient-based optimization is the
PEGASUS (Policy Evaluation-of-Goodness And Search Us-
ing Scenarios) planner (Ng and Jordan 2000). The training

method used in PEGASUS is similar to ours, but their ap-
proach based on deterministic simulative models relies on
i.i.d. noise variables pre-sampled from the standard uniform
distribution, which seems unnecessarily restrictive when
compared to the more general case based on distribution
re-parameterization presented here. Also, differently from
our proposed method leveraging flexible architectures of
DRPs, the empirical evaluations of PEGASUS on contin-
uous domains rely on hand-engineered features used as in-
puts to logistic models. Finally, it is assumed that the state
space forms a dS-dimensional unitary hyper-cube (i.e., S =
[0, 1]dS ), which avoids special considerations regarding nor-
malization of the inputs. We make no restrictive assumptions
regarding the state space.

In this work we focus on nonlinear domains. To the best
of our knowledge, the only other efficient planner accept-
ing arbitrary factored transition and cost functions in high
dimensional continuous spaces exhibiting nonlinear dynam-
ics is tf-plan (Wu, Say, and Sanner 2017).1 Similarly to the
approach presented here, tf-plan uses gradient-based opti-
mization on models with large number of action parameters
to solve complex nonlinear problems. However, their formu-
lation is only directly applicable to deterministic problems.
Here, we extend the planning as optimization approach to
the more general case of stochastic transitions.

Background
Markov Decision Processes
We consider sequential decision-making problems in which
an agent is supposed to interact with a discrete-time,
stochastic environment modeled by a Markov Decision Pro-
cess (MDP) (Puterman 2014). We are particularly concerned
with continuous state-action MDPs (CSA-MDPs) with ex-
ogenous events.

We define a discrete time, finite horizon, con-
tinuous state-action MDP by a tuple M =
(S,A,Ω, T , pω, R,H, s0), in which S ⊆ Rn is the
state space, A ⊆ Rn is the action space, Ω ⊆ Rm is the
set of exogenous events, T : S × A × Ω × S → [0, 1] is
the Markovian transition kernel given by the conditional
probability density p(s′|s,a, ω) over next state s′ given the
current state s, action a and event ω, pω is the probability
density over the set of exogenous events, C : S ×A → R≥0

is the cost function that specifies the immediate return
received in the current state s after applying action a,
H = 0, 1, ...,H − 1 is the finite set of decision timesteps,
and s0 is the start state.

CSA-MDPs are factored MDPs (Boutilier, Dean, and
Hanks 1999) where the state s is represented by an n-
dimensional vector whose dimensions are independent given
the previous state and action. Hence, the transition kernel de-
composes over the set of probability density functions of the
state fluents: p(st+1|st,at, ωt) =

∏n
j=1 p(s

j
t+1|st,at, ωt).

Also, CSA-MDPs naturally allow concurrency of actions.

1No name was suggested in (Wu, Say, and Sanner 2017); we
propose denoting their approach as “tf-plan”, as it is built on top of
TensorFlow’s deep learning framework (Abadi et al. 2016).



A Markovian deterministic policy is given by a function
π : S × H → A that prescribes a single action to each state
in a given decision timestep. We abuse notation in order to
denote the prescribed action by π(st) instead of π(s, t).

We define a state value function V π(s) as the expected
total cost received by following policy π from state s for a
finite horizonH , i.e., V π(s) = E

[∑H−1
t=0 C(st, π(st))

∣∣∣ s].
The agent’s goal is to find an optimal policy π∗ such that:

π∗ = arg min
π∈Π

V π(s0) .

Gradients in Stochastic Computation Graphs
Stochastic computation graphs (Schulman et al. 2015) are
a formalism used to specify models that mix deterministic
computations with random variables drawn from distribu-
tions whose parameters depend on the results of previous
computations. Its purpose is to define all dependencies be-
tween the variables of an acyclic generative model in order
to allow the development of efficient sampling and gradient
estimators.

Formally, a stochastic computation graph G = (V,E)
is a directed acyclic graph defined over three disjoint sets
of nodes: (i) input nodes Θ, assumed directly observable;
(ii) deterministic nodes D, corresponding to functions of
its parent nodes; and (iii) stochastic nodes S, representing
random variables conditionally distributed accordingly to a
function whose parameters depend on its parent nodes. The
set of nodes V is partitioned as V = Θ ∪ D ∪ S. An edge
(u, v) belongs to E if node v or its probability distribution
depends on node u. Let v and w be nodes of a stochastic
computation graph G. Then, we denote by v ≺ w the prop-
erty that it exists a dependency path from node v to node w
in G. Additionally, we denote by v ≺D w the property that
a dependency path from node v to node w traverses only de-
terministic nodes. Conversely, v ≺S w denotes the property
that a dependency path from node v to node w traverses at
least one stochastic node.

s0

θ

c0

π

s1

ω1 c1

π

s2

ω2 c2

π

s3

ω3

V̂ πθ

Figure 1: Stochastic computation graph of CSA-MDPs: the
inputs nodes are s0 and θ representing the start state and the
policy parameters shared across timesteps; stochastic nodes
correspond to state variables st+1 ∼ p(·|st,at, ωt) and ex-
ogenous events ωt ∼ pω(·); deterministic nodes consist of
action variables at = πθ(st) and costs ct = C(st,at). The
cost node corresponds to the value function estimate V̂ πθ .

The objective function of a stochastic computation graph
is given by J(θ) = Epθ [

∑
ĉ], where ĉ are leaf nodes known

as cost nodes. Input nodes are root nodes typically used to
define the parameters we would like to differentiate J with
respect to. Note that this objective function is given by an
expectation whenever the model contains stochastic nodes.
Therefore, we cannot directly use automatic reverse-mode
differentiation algorithms (Griewank and Walther 2008) to
optimize J in the general case where there is a path in graph
such that the condition θ ≺S J(θ) holds.

Figure 1 shows the stochastic computation graph of CSA-
MDPs with exogenous events. We follow the graphical no-
tation presented in (Schulman et al. 2015) where square
and rounded nodes represent deterministic functions and
stochastic variables, respectively. Also, nodes depicted with-
out border are considered observed, i.e., inputs nodes. Note
that there are multiple paths between the parameters θ and
the cost node V̂ πθ =

∑
t ct. For each timestep t, the only

path satisfying θ ≺D V̂ πθ traverses the graph through the
current cost ct, but paths satisfying θ ≺S V̂ πθ all go through
the next state st. So, direct application of automatic differ-
entiation is out of limits without additional work for MDPs
with stochastic transitions.

An effective way to circumvent this difficulty in esti-
mating gradients is to exploit the probability density re-
parameterization trick, which allows to sample a random
variable y ∼ pθ(·) by transforming it into a deterministic
function y = φ(θ, ξ) and using an independent marginal
density to sample an auxiliary random variable ξ ∼ p(·).
For the location-scale family of distributions (e.g., Normal,
Gamma, Uniform, Cauchy) the function φ(θ, ξ) is given by
φ(θ, ξ) = µθ+σθ ·ξ, where µθ and σθ are functions defining
the location and scale of probability density pθ(·).

For the purpose of estimating gradients in stochastic com-
putation graphs, the re-parameterization trick is the key
ingredient to obtain low-variance estimators of ∇θJ(θ)
(Schulman et al. 2015). Indeed, re-parameterizing the dis-
tributions to which the expectation is taken allows us to
push the gradient operator into the expectation. Let J(θ) =
Ey∼pθ [f(y)] be the objective function depending on the
function f defined over the stochastic node y drawn from
the distribution pθ. Then:

∇θJ(θ) = ∇θEy∼pθ [f(y)]

= ∇θEξ∼p[f(φ(θ, ξ))]

= ∇θ
∫
p(ξ)f(φ(θ, ξ))dξ

=

∫
p(ξ)∇θf(φ(θ, ξ))dξ

= Eξ∼p[∇θf(φ(θ, ξ))] .

Therefore, after re-parameterizing the distributions, we
can estimate the gradient ∇θJ(θ) by any approximation
method applicable to expectations. We refer to f(φ(θ, ξ))
as the surrogate cost function for J(θ).

Figure 2 shows the result of the re-parameterization trick
for the computation graph in Figure 1. Note that now all
paths from the input node θ to the cost node V̂ πθ satisfy
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Figure 2: Stochastic computation graph of CSA-MDPs after
re-parameterization of the transition distribution: note that
for all timesteps t > 0 each state st becomes a deterministic
function of previous states st−1, current action at, exoge-
nous event ωt, and the auxiliar noise variable ξt.

the property θ ≺D V̂ πθ . Therefore, automatic differentiation
can now be applied to a fully-differentiable cost function.

Deep Reactive Policies

A reactive policy is a model that attempts to explicitly rep-
resent a mapping from states to actions. It should be an ef-
ficient mechanism to select a valid action given any valid
state. Moreover, a DRP is a parametric model built from the
stacked layers of feed-forward neural nets.

...
state s

timestep t

... · · · ...
... at

h1 h2 hL−1 hL

Figure 3: Deep Reactive Policy: the input layer of the policy
network corresponds to the current state st and the output
layer corresponds to the distribution over actions at (in the
case of discrete action spaces) or the action variables them-
selves (in the case of continuous action spaces).

A feed-forward neural net is a parametric function ap-
proximator fθ : Rp → Rq consisting of compositional (hid-
den) layers l = 1, . . . , L that implement affine transfor-
mations z(l+1) = W (l) · h(l) + b(l) interleaved with non-
linear functions h(l+1) = f (l+1)(z(l+1)). Vectors z(l) and
h(l) are called logits and activations, respectively. The set
of parameters θ comprise the kernel matrices W (l) and bias
vectors b(l). Typical nonlinear functions used are the sig-
moid function σ(x) = 1

1+exp(−x) , the hyperbolic tangent

tanh(x) = exp(x)−exp(−x)
exp(x)+exp−x , and the rectified linear unit

ReLU(x) = max(0, x).

Probabilistic Planning as Optimization
In this section, we aim at formulating a probabilistic plan-
ning problem as an optimization problem over a stochastic
computation graph. Our goal is to optimize the parameters
of a DRP in order to minimize an approximation of the ex-
pected finite-horizon total cost from the given start state.

Policy Search via Gradient-Based Optimization
The overall approach of policy search via gradient-based op-
timization is to: (1) explicitly encode a policy using a para-
metric function πθ; (2) embed πθ in a stochastic computa-
tion graph approximating V πθ (s0); (3) define a suitable ob-
jective function J(θ); and (4) optimize the parameters via
stochastic gradient descent over J(θ).

Parametric policies Representing a policy by a paramet-
ric function can have a huge impact both on the training time
and in the capacity of approximating the optimal behavior in
the given MDP. A number of options can be used in the con-
text of policy search via gradient-based optimization. Usual
choices vary from simple linear models to radial basis func-
tions and neural nets. However, the only requirements are
that the policy must be quickly evaluated to select an action
and that the function’s outputs must be differentiable w.r.t.
its parameters for all states.

Objective function In principle, any non-decreasing func-
tion of

∑
t C(st, πθ(st)) could be used as the objective func-

tion J(θ) so as to minimize V πθ (s0). In this work, we shall
use the Mean-Square Error (MSE):

J(θ) = MSE[V πθ (s0), 0] = E

[(
H−1∑
t=0

C(st, πθ(st))

)]2

.

(1)
The MSE objective function can considerably accelerate

the optimization process as the gradients of the objective
function w.r.t. the policy parameters will have their norms
conveniently scaled up in the beginning of the training when
the total cost is most-likely far from its minimum value.
Moreover, we shall use Monte-Carlo sampling as a tractable
approximation of the expectation in the objective function:

J(θ) ≈ Ĵ(θ) =
1

N

N∑
i=1

(
H−1∑
t=0

C(si,t, πθ(si,t))

)2

, (2)

where i is the index of the state-action trajectory, N is the
number of trajectories, t is the timestep andH is the horizon.

Stochastic gradient descent In order to optimize the pol-
icy parameters θ in the stochastic computation graph, we
shall use an optimization method based on stochastic gra-
dient descent:

θ(k+1) = θ(k) − η ∇θJ(θ)|θ=θ(k) , (3)

where η is the learning rate.



A number of modern optimizers have been developed in
recent years (Ruder 2016). For the purposes of the experi-
ments, we used the adaptive optimizer RMSProp that im-
plements momentum by dividing the learning rate η by an
exponentially decaying average of squared gradients, thus
maintaining independent learning rates for each parameter:

E[g2](k) = γE[g2](k−1) + (1− γ)g2
(k) (4)

θ(k+1) = θ(k) +
η√

E[g2](k) + ε
g(k), (5)

where g = ∇θJ(θ) and ε is a small non-negative smoothing
term that avoids division by zero.

Deep Reactive Policies for Continuous Spaces
Currently, most works on DRPs in model-known planning
have focused on discrete stochastic policies (Issakkimuthu,
Fern, and Tadepalli 2018; Toyer et al. 2018; Groshev et al.
2018). Instead, we aim here at learning continuous deter-
ministic DRPs. Even though the general idea of an efficient
action selection mechanism enabling fast decision-making
remains the same, some special care is needed in order to
extend DRPs to continuous domains.

Action fluent constraints It is common in continuous ac-
tion spaces to constrain the valid values of the action flu-
ents. Therefore, at the very least, a DRP should be able to
accommodate action fluents whose range are either an open,
a closed or a half-open/half-closed interval of the reals. An
alternative to constrain at to be within the bounds [l,u] is to
apply a transformation on the logits zL of the output layer
of the DRP such that:

at =


l + (u− l) σ(z(L)), if l > −∞ and u < +∞
l + exp(z(L)), if l > −∞ and u = +∞
u− exp (−z(L)), if l = −∞ and u < +∞
z(L) otherwise,

(6)
where σ(x) is the sigmoid function and l and u denote lower
and upper bound vectors, respectively.

Layer normalization In addition to handle continuous
outputs representing continuous action fluents, a DRP in
continuous domains shall pay special attention to the range
of the state fluents. It is a well-known issue in training neu-
ral nets that the distribution of a layer’s activation can vary
widely as a function of its previous inputs, which can sig-
nificantly slow down the training, especially in the case of
saturating nonlinearities. This phenomenon often referred to
as internal covariate shift can be particularly pronounced in
DRPs for continuous spaces given that state fluents can vary
by many orders of magnitude, which is in direct contrast to
discrete domains that typically deal with state boolean vari-
ables. Recently, layer normalization (Ba, Kiros, and Hinton
2016) addressed this issue by normalizing the summed in-
puts of a given layer.2 Its effects are to re-center and re-scale

2We only used layer normalization at the input layer. Experi-
mentally, we saw no benefit to apply it to all DRP’s layers.

the inputs by using simple statistics of the distribution of ac-
tivations:

h(l) = f
( g

σ(l)
(z(l) − µ(l)) + b

)
, (7)

where g and b the gain and bias parameters of the same di-
mension as h(l), and µ(l) and σ(l) are the empirical mean
and standard deviation of the pre-activations z(l).

Experiments
Benchmark domains We extended three domains previ-
ously proposed (e.g., Navigation (Faulwasser and Findeisen
2009), HVAC (Heating, Ventilation and Air Conditioning)
(Agarwal et al. 2010), and Reservoir Control (Yeh 1985))
in order to incorporate stochastic transitions and additional
nonlinearities with the overall goal of making the problems
more appealing and challenging to our proposed approach.

Navigation is a path planning problem in a 2-dimensional
space in which an agent is supposed to get to a goal position
from a start position as fast as possible while avoiding de-
celeration zones. The position of the agent at timestep t is
given by the state variable pt ∈ R2. The agent’s movement
is given by the action fluent at ∈ [−1, 1]2. The dynamics of
the agent’s movement is defined by:

λ =
∏
j

2

1 + exp(−αj ||pt − cj ||2)
− 1 ,

pt+1 ∼ Normal(µ = pt + λat, σ =
σmax√

2
||at||) ,

where each deceleration zone j is characterized by its cen-
ter position cj and decay constant αj , and its effect de-
pends upon the Euclidean distance between its center and
the agent’s position. The joint deceleration factor λ is given
by the multiplicative effect of each independent decelera-
tion zone. The cost function is simply the Euclidian distance
from the current position to the goal position:

Ct = ||pt − g||2 .

HVAC is a centralized continuous decision problem in
which the objective is to control the temperature of multi-
ple rooms within a comfortable interval subject to energy
costs. The transition dynamics is defined by the nonlinear
heat transfer through walls between adjacent spaces (e.g.,
rooms, hallway, or outside area). Each room i has a state
variable δit ∈ R denoting its temperature at timestep t. The
action ait ∈ [0, amax] corresponds to the volume of heated
air sent via vent actuation to room i at each timestep t. The
transition function of the problem is given by the following
dependencies:

δoutside
t ∼ Normal(µout, σout) ,

δit+1 = δit + Normal(µa = ait(δa − δit), σa)+∑
ADJ(i,j)

Normal(µij = (δjt − δit)3/rij , σij) ,

where δa is the temperature of the air being sent by the cen-
tral actuator and rij is the thermal resistance between room i



and the adjacent space j. Standard deviations σa and σij are
constants of the domain. The cost function takes into consid-
eration the temperature comfort zone [li, ui] of each room i
and the energy cost k:

Ct =
∑
i

∣∣∣∣δit − (li + ui)

2

∣∣∣∣+ kait .

Reservoir Control is a system to maintain the level of in-
terconnected water reservoirs within a nominal range. Each
reservoir i has a state fluent denoting its level lit ∈ [0, limax]
and a corresponding action fluent ait related to the water flow
to a downstream reservoir (or to the sea). Note that even
though a given reservoir has a single downstream reservoir,
it can have zero or more upstream reservoirs. The dynamics
of the system is given by the following dependencies:

rit ∼ Gamma(k, α) ,

eit = 0.5 log(lit + 1)

(
lit

limax

)2

,

lit+1 = max
(

0, lit + rit − eit − ait +
∑

DOWN(j, i)

ajt

)
,

where rit and eit denote the rain and evaporation over reser-
voir i, and DOWN(j, i) is a topology predicate indicating
reservoir i is the downstream reservoir of j. The cost func-
tion is such that a penalty is given for each reservoir out of
its nominal range:

Ct =
∑
i


δlower(l

i
min − lit)2 if lit < limin ,

δupper(l
i
max − lit)2 if lit > limax ,

0 otherwise.

DRP architectures As there is an unbounded number of
architectures to investigate, we set ourselves to evaluate two
architectures representatives of distinct classes of models.
The first DRP, denoted “tf-mdp (1)”, is a shallow, but wide
model. The second model, denoted “tf-mdp (2)”, is a deep,
but narrow model. Table 1 shows the number of hidden
layers and units in each layer. In both models, we use the
ELU activation function (Clevert, Unterthiner, and Hochre-
iter 2015) and layer normalization (Ba, Kiros, and Hinton
2016) in the input layer. Table 2 shows the number of pa-
rameters for each model/architecture.

DRP Hidden Layers Number of Units
tf-mdp (1) 1 2048
tf-mdp (2) 4 256, 128, 64, 32

Table 1: DRP architectures

Implementation We implemented tf-mdp in TensorFlow
(Abadi et al. 2016).3 We specified the domains/instances
using RDDL (Relational Dynamic Influence Diagram Lan-
guage) (Sanner 2010) and compiled the models to stochastic

3https://github.com/thiagopbueno/tf-mdp

Domain tf-plan tf-mdp (1) tf-mdp (2)
Nav2 40 10,246 44,070
HVAC3 120 14,345 44,361
HVAC6 240 26,642 45,234
Res10 400 43,038 46,398
Res20 800 84,028 49,308
Res30 1,200 125,018 52,218

Table 2: Number of parameters per domain/instance

computation graphs in TensorFlow using a compiler specif-
ically built for this work.4 We conducted all experiments on
a single 2.4 GHz Intel Core i5 8GB RAM machine.

Methodology Training neural nets and especially deep
neural nets such as DRPs can be especially sensitive to the
choice of training hyperparameters (e.g, learning rate, batch
size, number of training epochs). Our objective with the ex-
periments is not necessarily to achieve the best possible out-
come by carefully fine-tuning hyperparameters, but instead
to provide a reasonable comparison between the models.
Hence, we selected the sensible default values shown in Ta-
ble 3 and fix them for all training runs.

Domain Batch Learning rate Epochs Horizon
Nav 256 0.001 200 20
HVAC 256 0.0001 200 40
Res 256 0.001 200 40

Table 3: Training hyperparameters for tf-mdp

We report average and standard deviation values over 10
training runs for each model/architecture in terms of quality
of solution (i.e., average total cost from start state) and com-
putational times. Additionally, in order to avoid hazardous
fluctuations and divergences during training, we keep the
best policy so far as a way to smooth out the gradient-based
policy search.

We compare the results of “tf-mdp (1)” and “tf-mdp (2)”
to an online extension of tf-plan implemented as an open-
loop feedback controller that attempts to optimize the aver-
age of sampled state-action trajectories. We run tf-plan for
10 and 25 training epochs per timestep, denoted “tf-plan
(10)” and “tf-plan (25)”, respectively. Note that 10 and 25
training epochs per step of tf-plan corresponds to 4 and 10
times the total number of training epochs given to tf-mdp.
We benchmark the results for the domains/instances: Nav2
(Navigation with 2 deceleration zones), HVAC3 (3 rooms)
and HVAC6 (6 rooms), and Res10/20/30 (Reservoir Control
with 10, 20 and 30 reservoirs, respectively).

Results Figures 4, 5 and 6 show that DRPs can achieve
comparable or better results than the online tf-plan planner.
Additionally, we notice that tf-mdp (2) (i.e., deep and narrow
DRP) performed better in Navigation and HVAC problems.

4https://github.com/thiagopbueno/rddl2tf



However, tf-mdp (1) (i.e., shallow and wide DRP) was able
to achieve better results for the number of training epochs
pre-defined in Reservoir instances, even though it seems that
tf-mdp (2) would be able to catch up if more training epochs
were given. Also, we observe that for bigger problems in
the Reservoir Control domain (as shown in Figure 6), both
architectures presented a considerable variance across dif-
ferent training runs.
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Figure 4: Navigation2: average total cost vs. training time
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Figure 5: HVAC3: average total cost vs. training time
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Figure 6: Reservoir20: average total cost vs. training time

Tables 4 and 5 show the empirical time estimates of in-
ference (i.e., average time to compute the next action) and
total computing time for each model and domain instance.
We can observe that the average inference time of tf-mdp is
within a fraction of the time required by the online planner
tf-plan, which empirically validates the claim that DRPs can
be useful for fast decision-making. Note that tf-mdp is on

average 5 orders of magnitude faster than tf-plan in terms
of inference time. Also, even when amortizing the offline
computational cost over the timesteps of the horizon, tf-mdp
remains competitive in terms of total computing time.

Domain tf-plan (10) tf-plan (25) tf-mdp (1) tf-mdp (2)
Nav2 1.2± 0.2 1.7± 0.3 2.4 · 10−5 1.8 · 10−5

HVAC3 3.2± 0.3 4.5± 0.5 2.3 · 10−5 1.6 · 10−5

HVAC6 3.6± 0.5 5.1± 1.3 3.2 · 10−5 1.9 · 10−5

Res10 2.9± 0.5 4.1± 0.2 3.2 · 10−5 2.6 · 10−5

Res20 4.8± 0.3 7.3± 2.2 3.8 · 10−5 3.2 · 10−5

Res30 7.4± 1.5 14.6± 6.1 5.5 · 10−5 4.1 · 10−5

Table 4: Average inference time per step (sec)

Domain tf-plan (10) tf-plan (25) tf-mdp (1) tf-mdp (2)
Nav2 26.6± 1.9 34.2± 2.3 35.4± 1.7 24.8± 1.0
HVAC3 126.4± 2.8 183.6± 4.7 138.3± 2.2 93.0± 2.5
HVAC6 138.9± 3.7 198.8± 6.5 150.5± 1.7 106.4± 2.7
Res10 117.7± 2.8 164.0± 4.7 190.7± 3.4 134.9± 4.5
Res20 194.4± 3.6 295.6± 5.6 233.2± 4.7 161.4± 2.7
Res30 296.3± 4.5 587.7± 5.8 344.9± 3.1 244.1± 3.7

Table 5: Total computing time (sec)

Conclusion
We investigated a promising approach for optimizing DRPs
by leveraging non-convex optimization techniques com-
monly used in Deep Learning, but not frequently applied
to model-known planning. We presented a gradient-based
optimization approach for training DRPs that exploits the
re-parameterization of the stochastic computation graph of
MDPs. More general than previous approaches, we focused
on continuous stochastic domains with concurrent actions
and exogenous events exhibiting nonlinear transition and
cost functions. We showed that training large DRPs with
hundred of thousands of continuous action parameters can
be carried out within minutes without the need of high-
performance hardware. Finally, comparing the DRPs trained
by our approach with online state-of-the-art gradient-based
planners, we observed a speedup of several orders of mag-
nitude on the time to select actions, which highlights the po-
tential of DRPs for fast decision-making in continuous do-
mains. As future work, we shall seek efficient ways to extend
gradient-based policy search to hybrid (mixed discrete and
continuous) domains for which more sophisticated methods
for gradient backpropagation over the stochastic computa-
tion graph are required.
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